prof. Ing. Vladimír Košťál, CSc.
Zástupce ředitele
Entomologický ústav
Vedoucí laboratoře - Laboratoř diapauzy hmyzu
Oddělení biochemie a fyziologie
Entomologický ústav
Předseda rady
Rada pracoviště BC
Vedení Biologického centra AV
+420 387775324, +420 387775230
kostal@entu.cas.cz
Diapauza a chladová odolnost hmyzu
Celkem nalezeno: 132 záznamů
|
---|
Rozsypal J., Moos M., Vodrážka P., Nedvěd O., Košťál V. (2024) Physiology of Overwintering in a Microhabitat Fully Exposed to Adverse Weather Conditions: Lime Seed Bugs on Tree Trunks and Branches Zoological Science 42: DOI: https://doi.org/10.2108/zs240064 |
Štětina T., Košťál V. (2024) Extracellular freezing induces a permeability transition in the inner membrane of muscle mitochondria of freeze-sensitive but not freeze-tolerant Chymomyza costata larvae. Frontiers in Physiology
15: 1358190.
DOI: https://doi.org/10.3389/fphys.2024.1358190 |
Štětina T., Košťál V. (2023) Mortality caused by extracellular freezing is associated with fragmentation of nuclear DNA in larval haemocytes of two drosophilid flies. Journal of Experimental Biology
226: jeb246456.
DOI: https://doi.org/10.1242/jeb.246456 |
Grgac R.,
Rozsypal J.,
Des Marteaux L. E.,
Štětina T., Košťál V. (2022) Stabilization of insect cell membranes and soluble enzymes by accumulated cryoprotectants during freezing stress Proceedings of the National Academy of Sciences USA
119: e2211744119.
DOI: https://doi.org/10.1073/pnas.2211744119 |
Hůla P.,
Moos M.,
Des Marteaux L. E.,
Šimek P., Košťál V. (2022) Insect cross-tolerance to freezing and drought stress: role of metabolic re-arrangement. Proceedings of the Royal Society B
289: 20220308.
DOI: 10.1098/rspb.2022.0308 |
Kučera L.,
Moos M.,
Štětina T.,
Korbelová J.,
Vodrážka P.,
Des Marteaux L. E.,
Grgac R.,
Hůla P.,
Rozsypal J., Faltus M.,
Šimek P., Sedlacek R., Košťál V. (2022) A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva. Journal of Experimental Biology
225: jeb243934.
DOI: 10.1242/jeb.243934 |
Moos M.,
Korbelová J.,
Štětina T.,
Opekar S.,
Šimek P.,
Grgac R., Košťál V. (2022) Cryoprotective metabolites are sourced from both external diet and internal macromolecular reserves during metabolic reprogramming for freeze tolerance in drosophilid fly, Chymomyza costata. Metabolites
12: 163.
DOI: 10.3390/metabo12020163 |
Kim B.Y., Matute D.R., Petrov D.A., plus 36 consortial authors, Košťál V. (2021) Highly contiguous assemblies of 101 drosophilid genomes. eLife
10: e66405.
DOI: 10.7554/eLife.66405 |
Popovic Z., Maier V., Avramov R., Uzelac I., Gošic-Dondo S., Blagojevic D., Blagojevic D., Košťál V. (2021) Acclimations to cold and warm conditions differently affect the energy metabolism of diapausing larvae of the European corn borer Ostrinia nubilalis (Hbn.). Frontiers in Physiology
12: 768593.
DOI: 10.3389/fphys.2021.768593 |
Rozsypal J.,
Moos M., Rudolf Ivo, Košťál V. (2021) Do energy reserves and cold hardiness limit winter survival of Culex pipiens? Comparative Biochemistry and Physiology Part A
255: 110912.
DOI: 10.1016/j.cbpa.2021.110912 |
Bayley J.S., Sorensen J.,
Moos M., Košťál V., Overgaard J. (2020) Cold acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, Locusta migratoria. American Journal of Physiology-Regulatory, Integrative, and Comparative Physiology
319: R439-R447.
DOI: 10.1152/ajpregu.00068.2020. |
Potts L.J., Košťál V.,
Šimek P., Teets N. M. (2020) Energy balance and metabolic changes in an overwintering wolf spider, Scizocosa stridulans. Journal of Insect Physiology
126: 104112.
DOI: 10.1016/j. jinsphys.2020.104112 |
Štětina T.,
Des Marteaux L. E., Košťál V. (2020) Insect mitochondria as targets of freezing-induced injury. Proceedings of the Royal Society B
287: 20201273.
DOI: 10.1098/rspb.2020.1273 |
Des Marteaux L. E.,
Hůla P., Košťál V. (2019) Transcriptional analysis of insect extreme freeze tolerance. Proceedings of the Royal Society B
286: 20192019.
DOI: 10.1098/rspb.2019.2019 |
Košťál V.,
Grgac R.,
Korbelová J. (2019) Delayed mortality and sublethal effects of cold stress id Drosophila melanogaster. Journal of Insect Physiology
113: 24-32.
DOI: 10.1016/j.jinsphys.2019.01.003 |
Rozsypal J., Toxopeus J.,
Moos M.,
Berková P.,
Šimek P., Košťál V. (2019) Fat body disintegration after freezing stress is a consequence rather than a cause of freezing injury in larvae of Drosophila melanogaster. Journal of Insect Physiology
115: 12-19 .
DOI: 10.1016/j.jinsphys.2019.03.008 |
Štětina T.,
Poupardin R.,
Moos M.,
Šimek P., Šmilauer Petr, Košťál V. (2019) Larvae of Drosophila melanogaster exhibit transcriptional activation of immune response pathways and antimicrobial peptides during recovery from supercooling stress. Insect Biochemistry and Molecular Biology
105: 60-68.
DOI: 10.1016/j.ibmb.2019.01.006 |
Toxopeus J., Košťál V., Sinclair B. (2019) Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Proceedings of the Royal Society B
286: 20190050.
DOI: 10.1098/rspb.2019.0050 |
Des Marteaux L. E.,
Štětina T., Košťál V. (2018) Insect fat body cell morphology and response to cold stress is modulated by acclimation. Journal of Experimental Biology
221: jeb189647.
DOI: 10.1242/jeb.189647 |
Lehmann P., Pruisscher P., Košťál V.,
Moos M.,
Šimek P., Nylin S., Agren R., Varemo L., Wiklund C., Wheat C.W., Gotthard K. (2018) Metabolome dynamics of diapause in the butterfly Pieris napi: distinguishing maintenance, termination and post-diapause phases. Journal of Experimental Biology
221: jeb.169508.
DOI: 10.1242/jeb.169508 |